

Horizon 2020

Call identifier: H2020-MG-2018-Two-Stages Starting date: 2019-09-01 Duration: 48 months
MG-2.2-2018: Marine Accident Response, Subtopic C

Project acronym: LASH FIRE

Project full title: Legislative Assessment for Safety Hazard of Fire and Innovations in Ro-ro
ship Environment

Grant Agreement No: 814975

Coordinator: RISE Research Institutes of Sweden

Deliverable D08.13

Overall integration with firefighting control centre

June 2023

Dissemination level: Public

Deliverable D08.13

1

Abstract
The Stowage Planning Tool (SPT) is one of the Risk Control Options envisaged in LASH FIRE from the
ignition prevention perspective. The SPT is a software solution that includes fire hazard management
aiming at supporting the stowage process by means of suggesting an alternative cargo distribution.
The proposed cargo distribution takes advantage of a risk assessment for every single unit based on
historical data with the objective of reducing the overall risk in ro-ro spaces.

Since such a software manages information about the cargo, including physical characteristics, type or
accurate location of their placement in the ship, it also plays a relevant role when it comes to provide
valuable support to firefighting after departure.

The present deliverable describes the implementation of a specific use case of the Stowage Planning
Tool that aims at supporting the integration with the firefighting control centre, also known as Fire
Resource Management Centre, by means of data sharing.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 814975

The information contained in this deliverable reflects only the view(s) of the author(s). The Agency
(CINEA) is not responsible for any use that may be made of the information it contains.

The information contained in this report is subject to change without notice and should not be
construed as a commitment by any members of the LASH FIRE consortium. In the event of any software
or algorithms being described in this report, the LASH FIRE consortium assumes no responsibility for
the use or inability to use any of its software or algorithms. The information is provided without any
warranty of any kind and the LASH FIRE consortium expressly disclaims all implied warranties, including
but not limited to the implied warranties of merchantability and fitness for a particular use.

© COPYRIGHT 2019 The LASH FIRE Consortium

This document may not be copied, reproduced, or modified in whole or in part for any purpose without
written permission from the LASH FIRE consortium. In addition, to such written permission to copy,
acknowledgement of the authors of the document and all applicable portions of the copyright notice
must be clearly referenced. All rights reserved.

Deliverable D08.13

2

Document data

Document Title: LASH FIRE_D08.13_Overall_integration_with_firefighting_control_centre_V1.docx

Work Package: WP08 – Ignition

Related Task(s): T08.11. T08.5, T08.7, T08.8, T07.10

Dissemination level: Public

Deliverable type: R

Lead beneficiary: CIM

Responsible author: Francisco Rodero

Co-authors: -

Date of delivery: 2023-06-20

References: D07.6, D07.11, D08.4

Approved by
Erik Styhr on
2023-06-16

Robert Rylander on
2023-06-05

Maria Hjohlman on
2023-05-29

Involved partners

No. Short
name

Full name of Partner Name and contact info of persons involved

16 CIM Centre Internacional de Metodes
Numerics en Enginyeria

Francisco Rodero, francisco.rodero@upc.edu

Document history

Version Date Prepared by Description

[00] 2021-04-15 Ángel Priegue Draft of structure

[01] 2023-04-24 Francisco Rodero Final report

[02] 2023-05-25 Francisco Rodero Final report reviewed

[03] 2023-06-20 Francisco Rodero Final report approved

Deliverable D08.4

3

Content
1 Executive summary ... 4

1.1 Problem definition ... 4

1.2 Technical approach.. 4

1.3 Results and achievements ... 4

1.4 Contribution to LASH FIRE objectives .. 4

1.5 Exploitation.. 5

2 List of symbols and abbreviations ... 5

2.1 Abbreviations .. 5

3 Introduction ... 6

4 Fire Patrol Report feature .. 7

4.1 Specification .. 7

4.2 Inputs ... 7

4.2.1 Configuration parameters ... 7

4.3 Outputs .. 9

4.4 Design .. 9

4.4.1 Data model .. 9

4.4.2 Workflow ... 10

5 Implementation details ... 11

5.1 Application programming interface .. 11

5.2 Error management .. 11

5.3 Fire Patrol Report .. 12

6 Test methodology .. 13

6.1 FirePatrolReport .. 13

6.1.1 Correct management of the parameters .. 13

6.1.2 Construction of the query to the database ... 14

6.1.3 Generation of the output .. 16

7 Conclusions .. 17

8 References ... 18

9 Indexes .. 19

9.1 Index of tables ... 19

9.2 Index of figures .. 19

Deliverable D08.4

4

1 Executive summary
Main author of the chapter: Francisco Rodero, CIM

1.1 Problem definition
When a fire happens, several actors and technical systems simultaneously collaborate to achieve many
operational goals. During these situations, it is difficult to get an overview of the status and available
resources and therefore, one of the goals of LASH FIRE, in terms of inherently safe design for ships, is
the design of the concept for a firefighting resource management centre.

The Fire Resource Management Centre (FRMC), described in D07.8 “Design definition and
development of firefighting resource management simulator prototype”, aims at supporting critical
operations in case of fire to reduce the potential for human error, accelerating time sensitive tasks and
providing a more comprehensive decision support.

This way, to enhance the effectiveness of the FRMC and increasing the capacity to provide a powerful
resource for firefighting operations, is it critical to concentrate as much as meaningful information
possible together with, of course, a careful design. In that sense, the SPT plays a critical role in
generating the data needed for the digital fire centre to be able to create a fire patrol report.

1.2 Technical approach
Feeding the FRMC with useful data is addressed by means of the implementation of one of the
envisaged use cases of the SPT as defined in deliverable D08.4 “Stowage planning optimization and
visualization aid”, Fire Patrol Report, which objective is the generation of data needed by external
systems to prepare specific reports for fire patrol purposes.

1.3 Results and achievements
The Stowage Planning Tool has been successfully extended with the implementation of the above-
mentioned FirePatrolReport feature, allowing the SW to share information about the accurate location
of the cargo units along the decks, cargo type, risk score and additional references to the nearby units.

The output of the new feature contains relevant information that can be mainly used by the FRMC to
create fire patrol reports as well as to easily know what is the cargo nearby an area where an eventual
ignition is detected. Also, the information can be used by the Automated Guided Vehicle (AGV) to
design and plan their paths according to the actual cargo. Indirect integration of automatic screening
of the units and continuous monitoring of the electrical charging infrastructure is also possible, which
means that systems and tools developed in WP8 can eventually be integrated in the firefighting control
centre as expected.

1.4 Contribution to LASH FIRE objectives
With this feature, the SPT preserves the contribution to the project as described in D08.4, that is, fire
risk is mitigation by a safety-optimized usage of deck space and eventually reduction of consequences
in case of fire by a cargo distribution with lower risk score based on historical data.

Also, the integration with the FRMC extends the support of the SPT from the Ignition Prevention stage
to the Extinguishment stage, in terms of the fire protection chain.

Besides this, there is also a clear contribution to the IMO Strategic Plan 2018-2023, where integration
of new and advanced technologies in the regulatory framework is strongly recommended.

Deliverable D08.4

5

1.5 Exploitation
The exploitation of this functionality is closely linked to the use of the FRMC concept and with benefits
for involved crew on the bridge during the management of fire situations (fire reports) or even for
supporting preventive patrolling (path planning based on cargo contents) using automated guided
vehicles.

2 List of symbols and abbreviations
2.1 Abbreviations

AGV Automated Guided Vehicles

API Application Programming Interface

DB Database

DFC

DG Dangerous Goods

FRMC Fire Resource Management Centre

IMDG International Maritime Dangerous Goods

JSON JavaScript Object Notation

RA Risk Assessment

RS Risk Score

SPT Stowage Planning Tool

SQL Structured Query Language

SW Software

VHD Vehicle Hot-Spot Detection

Deliverable D08.4

6

3 Introduction
Main author of the chapter: Francisco Rodero, CIM

Although the technical solutions that have been developed in LASH FIRE focus on specific stages of the
fire protection chain, some synergies can be found from the overall perspective. The integration of the
SPT with the FRMC, not a physical place but a collection of tools and methods to manage firefighting
effectively, is a clear example of these synergies.

The next diagram depicts the whole architecture of the SW, including the envisaged interfaces to both
external and internal components on the right side.

Figure 1 - Software components of the Stowage Planning Tool

Focusing the risk reduction in case of ignition, the SPT supports the stowage process not only during
the pre-loading stage but also during the stowage process, where some situations that may alter the
suggested cargo distribution can be found. For example, cargo units are not available to be loaded
when they should (based on the suggested cargo distribution and the current loading status) because
they have not just yet arrived to the terminal, or they will not (no-show), or even because an alarm has
been triggered in the VHD when inspecting the unit; the latter uses the VHD interface to notify the SPT
that the unit will not be loaded or will be loaded with special treatment after cargo office approval,
which means that the risk score of the unit increases.

While the VHD interface is an input interface to the SPT, the DFC/FRMC and rolling drones (AGV) are
output interfaces:

 Information about placement of cargo units and their characteristics can be shared with the
DFC/FRMC to help generating fire patrol reports.

 The same information, or filtered subsets of this information, can be requested by the AGVs
for path planning purposes. That is, routes followed by the rolling drones can be created based
on the actual cargo distribution rather than just patrolling everywhere.

These output interfaces provide accurate, up-to-date cargo stowage information to the ‘Digital Fire
Central’ developed in D7.11 “Firefighting resource management simulator prototype” and thus
ensuring that the work undertaken in the Fire Resource Management Centre is fully informed of what
is burning and what may catch fire next. Fire patrol reports can include contents like:

 Inspection schedules for specific areas containing DG or other hazardous materials.
 Use of certain fire suppression systems or extinguishment methods in specific areas.

Deliverable D08.4

7

 Additional safety measures for cargo with high-risk score, e.g., if special firefighting
equipment, personal protection equipment or response procedures should be considered due
to the cargo.

4 Fire Patrol Report feature
Main author of the chapter: África Marrero and Francisco Rodero, CIM

The feature being described here concerns the implementation of the use case UC#13 which generates
the data needed by an external system to prepare a specific report for fire patrol purposes.

It is important to remark that this implementation is not a stand-alone development but an extension
of the SPT. This means that this deliverable only documents the modifications made on the original
software while all technical details of the SPT as defined in D08.4 still apply.

4.1 Specification
There is just one additional explicit requirement that extends the current definition of the SPT.

Table 1.List of requirements

Identifier Description
REQ300 The system will implement an interface to external software in order to export up-to-

date information about the location, type (including DG class if needed), risk score and
nearby units for each single unit of an existing cargo distribution.

4.2 Inputs
4.2.1 Configuration parameters
The following table contains updated information, whenever is necessary, respect to the parameters
defined in D08.4. Again, to highlight that definitions are cumulative in the sense that which is not
override here, still applies.

Deliverable D08.4

8

Table 2.List of additional considerations about configuration parameters respect to D08.4

Name Description and valid values
Service An additional use case is defined:

 FirePatrolReport: The system returns information as defined in UC#13
/ REQ300.

IdService Numerical parameter (greater than 1) that identifies one service that has been
already executed. This is the identifier stored in the database.

deck Filters the result by a specific deck
lane Filters the result by a specific lane
frame_start Filters the result by a frame value greater or equal than this value
frame_end Filters the result by a frame value lower or equal than this value
type Filters the result by a cargo type (from MT_FIREORIGIN2 table as defined in

D08.4)
dg_class Filters the result by a DG class (from MT_DG_CLASS table as defined in D08.4)

The following parameters: deck, lane, frame_start, frame_end, type and dg_class, are cumulative
when it comes to filtering. That means that the resulting subset of units must satisfy all the filters. For
example, if the service is executed with deck=3, frame_end=187 and dg_class=4.1, the list of returned
units must satisfy that they are located in deck=3 AND in a slot defined by frame_start and frame_end
where the value for the frame_end is 187 as a maximum AND all of them are flammable solids 4.1
dangerous goods class.

The following table shows what parameters are required for this service to run properly:

Table 3.List of required parameters for FirePatrolReport service

Parameter
Service

FirePatrolReport
Service Yes
ServiceDescription Optional
IdService Yes
Ship No
Layout No
Route No
SlotError Yes
Sep_X Yes
Sep_Y Yes
timeout No
Improvement No
IsTest -
IdTest -
Deck Optional
lane Optional
frame_start Optional
frame_end Optional
type Optional
dg_class Optional

Deliverable D08.4

9

4.3 Outputs
This is the information which is shared with the FRMC (via the DFC) or AGV for them to create fire
patrol reports or path plans, respectively.

 Cargo unit identifier: Unique identifier of the unit itself.
 Type: Value for the cargo type as defined in MT_FIREORIGIN2 table.
 DG class: Optional. In case of a DG, it contains the IMDG classification.
 Deck, lane, frame_start/frame_end: Accurate location of the unit (placement slot).
 Score values: Two values defining the initial risk score (type dependent) and the final risk score

(location dependent) as per the risk assessment based on historical data.
 List of nearby units: According to Sep_X and Sep_Y, the list includes the nearby units in the

same deck.

Please note that although not included in the demonstration and testing, both alarm (triggered by the
unit when passing the VHD) and id_connection (identifier for the electrical connection) fields can also
be easily added to the output since they are actually defined as part of the SERVICE_UNITS table against
which the query is executed.

Notice that the last 6 optional parameters in the above table allow to customize the request for specific
locations. Since the service can be called many times with different values for parameters, whoever
request the information can combine the results as needed. Two examples could be:

 The DFC in the FRMC receives an alarm from the connected Fire Detection System, gets the
location of the sensor which has triggered the alarm and then it creates a request based on
this location to get all the units in a surrounding area of about 50 meters.

 An AGV, equipped with a specific gas sensor, requests for the units of classes 2.1, 2.2 and 2.3
that are inside a limited area because it is not able to navigate beyond these limits unless it
recharges battery over 50%.

The list of nearby units is provided to add value in terms of potential fire propagation beyond the
specific area requested.

4.4 Design
4.4.1 Data model
The underlying database has not changed but a small modification has been implemented in order to
improve the performance of the execution. More concretely, two new fields have been added in the
SERVICE_UNITS table:

Table 4. Additional fields of SERVICE_UNITS table

Attribute Type References Description
type TXT MT_FIREORIGIN2.uid Value based on FIRE_ORIGIN2
dg_class TXT MT_DG_CLASS.uid Value based on MT_DG_CLASS

Deliverable D08.4

10

4.4.2 Workflow
4.4.2.1 FirePatrolReport
Diagram in Figure 2 depicts the main actions taken during the execution of the service before sending
back the generated output to the requester.

Figure 2. Workflow of FirePatrolReport service

4.4.2.1.1 Get Layout Information
Output contains information that depends on physical layout of the ship, so the first step retrieves this
information from the database taking into account the service identifier passed as one of the
configuration parameters.

4.4.2.1.2 Get Filtered list of Units
Filters used as arguments for the request, if any, are combined with the full list of units to generate
the subset the user is interested on.

4.4.2.1.3 Get list of nearby units / Combine output
For each filtered unit, the software parses the physical layout and all the existing units to create a list
of nearby units.

Deliverable D08.4

11

5 Implementation details
Main author of the chapter: Francisco Rodero, CIM

The next table includes an update of the files that compose the software:

Table 5. Folders and files of the software development

Path File name Description

/uc firepatrolreport.py Specific implementation for FirePatrolReport use case

The next sections include the most relevant tips concerning the development using parts of the code:

5.1 Application programming interface

In the same way that the visual interface communicates with the implementation of the core
components of the SPT using a lightweight RESTful API with Flask and the Python code, both FRMC and
AGV developments can do the same.

The API has been extended with the entry point to the implementation:

@app.route('/firepatrolreport', methods = ['GET'])

def firepatrolreport():

This way, interaction with the FirePatrolReport service via the API uses HTTP requests like the
following:

http://XXX.YYY.ZZZ.TTT:5000/firepatrolreport?IdService=2&SlotError=0.1&Sep_
X=6&Sep_Y=3

The previous example is calling the service just with the mandatory parameters. A full request using all
parameters could be as follows:

http://XXX.YYY.ZZZ.TTT:5000/firepatrolreport?IdService=2&SlotError=0.1&Sep_
X=6&Sep_Y=3&deck=5&lane=93&frame_start=6&frame_end=84&type=CAR&dg_class=4.3

5.2 Error management

The below table includes the only error message that has been added to support the service:

Table 6.Implemented errors/warnings messages

Type Group ID Description
E 0 200 Parameter {deck, lane} must be integer greater than 0

Deliverable D08.4

12

5.3 Fire Patrol Report

Since it is an extension of the actual SPT the implementation of the FirePatrolReport uses lot of existing
code concerning the list of nearby units (which was implemented to support the Score service) and
two new functions: the one combining all the information retrieved from the database to create the
output (two Python dictionaries are used to write the output file which is, then, parsed by the API to
send back the information) and the query to the database, which looks like as follows:

returns list of units that have been processed by service_id in a format
which is focused on the Fire Resource Management Centre and/or the Path
Planning for the AGVs
def RS_getServiceUnitsFirePatrolReport(cfg):
 result = {}
 CURSOR = CONNDB.cursor()
 if CURSOR != None:
 # Location attributes get from SERVICE_UNITS since it is the table
 # that stores the final distribution
 query = "SELECT id_cargo_unit, type, dg_class, id_deck, id_lane,
frame_start, frame_end, RS0, RS"
 query += " FROM SERVICE_UNITS WHERE"
 query += " id_service=" + str(cfg["Parameters"]["IdService"])
 try:
 deck = cfg["Parameters"]["deck"]
 query += " AND id_deck=" + str(deck)
 except:
 None
 try:
 lane = cfg["Parameters"]["lane"]
 query += " AND id_lane=" + str(lane)
 except:
 None
 try:
 frame_start = cfg["Parameters"]["frame_start"]
 query += " AND frame_start>=" + str(frame_start)
 except:
 None
 try:
 frame_end = cfg["Parameters"]["frame_end"]
 query += " AND frame_end<=" + str(frame_end)
 except:
 None
 try:
 type = cfg["Parameters"]["type"]
 query += " AND type='" + str(type) + "'"
 except:
 None
 try:
 dg_class = cfg["Parameters"]["dg_class"]
 query += " AND dg_class='" + str(dg_class) + "'"
 except:
 None
 query += ";"
 CURSOR.execute(query)
 for record in CURSOR:
 try:
 result[record[0]]
 except:
 result[record[0]] = []

Deliverable D08.4

13

 result[record[0]] = [record[1], record[2], record[3], record[4],
record[5], record[6], record[7], record[8]]
 else:
 print("RS_getServiceUnitsFirePatrolReport::Error creating cursor!")
 return result

The function creates a SQL query where parameters are used to filter the results of the query.

6 Test methodology
Main author of the chapter: Francisco Rodero, CIM

6.1 FirePatrolReport

The next steps have been followed to test that the feature works properly:

1. Verification of the correct management of parameters

2. Verification of the correct construction of the query to the database

3. Verification that the output contains expected contents and format

The way the SPT has been designed and implemented makes that most of the tests mentioned above
have been indirectly verified during the testing of both Score and Distribution services.

6.1.1 Correct management of the parameters

Two tests have been conducted, first omitting one the mandatory parameters (”IdService”) and then
setting a wrong value for one of the optional parameters (”frame_start”).

Deliverable D08.4

14

Figure 3. Output for tests checking for a correct management of the parameters

As shown above, the execution of the SW detects both errors and stops running, which is the expected
behaviour.

6.1.2 Construction of the query to the database

Two tests have been conducted, first omitting submitting only mandatory parameters and the second
using all available parameters. The source code has been modified temporarily to print the string to
the console.

Deliverable D08.4

15

Figure 4. Output for tests checking a correct construction of the query

As shown above, the execution of the SW correctly manages the parameters to construct the next two
SQL queries, which is the expected behaviour:

SELECT id_cargo_unit, type, dg_class, id_deck, id_lane, frame_start, frame_end, RS0,
RS FROM SERVICE_UNITS WHERE id_service=6;

SELECT id_cargo_unit, type, dg_class, id_deck, id_lane, frame_start, frame_end, RS0,
RS FROM SERVICE_UNITS WHERE id_service=6 AND id_deck=3 AND id_lane=43 AND
frame_start>=100 AND frame_end<=200 AND type='TRAILER' AND dg_class='2.2';

Deliverable D08.4

16

6.1.3 Generation of the output

To verify that output is generated as expected, the contents of the output files are checked after the
same tests of the previous section. First, using only mandatory parameters results on a list of all
available units included in the reference input file:

2001;TRAILER;;2;18;102.0;110.5;1;1.0;2002,2003,2004,2005,2006,2007,2008,2009
2002;TRAILER;;2;16;100.0;109.0;1;1.0;2001,2003,2004,2005,2006,2007,2008,2009
2003;TRAILER;;2;16;110.0;119.0;1;1.0;2001,2002,2005,2006,2009
2004;TRAILER;;2;16;90.0;99.0;1;1.0;2001,2002,2005,2007,2008
2005;TRAILER;;2;17;100.0;109.0;1;1.0;2001,2002,2003,2004,2006,2007,2008,2009
2006;TRAILER;;2;17;110.0;119.0;1;1.0;2001,2002,2003,2005,2009
2007;TRAILER;;2;17;90.0;99.0;1;1.0;2001,2002,2004,2005,2008
2008;CAR;;2;15;86.0;95.0;2;2.0;2001,2002,2004,2005,2007
2009;V;;2;18;111.0;120.0;3;3.25;2001,2002,2003,2005,2006
3001;TRAILER;;3;44;115.0;124.0;1;1.0;3004,3005,3007,3008,3009
3002;TRAILER;;3;40;86.0;95.0;1;1.0;3003,3004,3006,3008,3009
3003;TRAILER;;3;41;86.0;95.0;1;1.0;3002,3004,3006,3008,3009
3004;TRAILER;;3;43;105.0;114.0;1;1.0;3001,3002,3003,3005,3006,3007,3008,3009
3005;TRAILER;2.2;3;43;115.0;124.0;2;2.0;3001,3004,3007,3008,3009
3006;V;;3;39;86.0;95.0;3;3.0;3002,3003,3004,3008,3009
3007;CAR;;3;45;115.0;124.0;2;2.5;3001,3004,3005,3008,3009
3008;TRAILER;;3;45;105.0;114.0;1;1.0;3001,3002,3003,3004,3005,3006,3007,3009
3009;TRAILER;;3;44;105.0;114.0;1;1.0;3001,3002,3003,3004,3005,3006,3007,3008
4001;TRAILER;;4;74;90.0;99.0;1;1.0;4003,4005,4006,4007,4008
4002;CAR;;4;80;116.0;125.0;2;2.0;4003,4004,4007,4008,4009
4003;TRAILER;;4;79;106.0;115.0;1;1.0;4001,4002,4004,4005,4006,4007,4008,4009
4004;CAR;;4;79;116.0;125.0;2;2.0;4002,4003,4007,4008,4009
4005;V;;4;76;90.0;99.0;3;3.0;4001,4003,4006,4007,4008
4006;TRAILER;;4;75;90.0;99.0;1;1.0;4001,4003,4005,4007,4008
4007;TRAILER;;4;78;106.0;115.0;1;1.0;4001,4002,4003,4004,4006,4008,4009
4008;TRAILER;;4;80;106.0;115.0;1;1.0;4001,4002,4003,4004,4005,4006,4007,4009
4009;TRAILER;;4;78;116.0;125.0;1;1.0;4002,4003,4004,4007,4008

The contents when using all parameters results on the next contents:

3005;TRAILER;2.2;3;43;115.0;124.0;2;2.0;3001,3004,3007,3008,3009

It is important to highlight that there are many combinations of parameters that give the last output.
For example, if only parameter dg_class with value 2.2 is used, since there is only one unit satisfying
this condition.

Finally, before sending back the response, the API formats the output in JSON, which has been also
verified with both tests as shown in the below pictures:

Figure 5. Output in JSON format (full list of units)

Figure 6. Output in JSON format (filter for dg_class=2.2 used)

Deliverable D08.4

17

7 Conclusions
Main author of the chapter: Francisco Rodero, CIM

Overall integration of systems and tools developed in the context of WP08 with the firefighting control
centre is made through the implementation of an interface between the DFC in the FRMC and the SPT,
the main reason being that the SPT already concentrates relevant activity of these systems or has been
designed to include in short-term without significant impact at coding level.

Focusing on the objectives, the extension of the SPT with this feature allows the software going beyond
the limits of the ignition prevention and firefighters can now create more accurate patrol reports
including up-to-date information concerning the actual cargo of a ship:

 Cargo scanning and identification system: The Stowage Planning Tool supports the stowage
process not only during the pre-loading but also during the loading stage. If an alarm is
triggered by the VHD, the SPT keeps track of the alarm for the specific unit and recalculates
the risk score accordingly. So, units that have been raised an alarm and have been finally
loaded in the ship will also be included in the output of the FirePatrolReport feature.

 Automatic screening with rolling drones: AGVs can take advantage of the FirePatrolReport
feature to get valuable information about cargo distribution for path planning purposes. Since
vehicles can request information as many times as needed, patrolling routes can be
dynamically adapted to battery charging status, preventive monitoring of certain areas or to
control specific units. This way, in case of abnormal temperature detected by their thermal
cameras, direct association between the warning and the cargo information can be made.

 Electrical charging monitoring: There is an indirect integration between the FRMC and the
system responsible of the continuous monitoring of the charging infrastructure through the
SPT. The SW has been designed to manage unique connections for these vehicles that require
to be connected during the voyage (reefer units or EV). These connections are selected during
the cargo distribution depending on the final placement of the units. This way, output
information gives information about which connection is being used by every single unit, which
can be send to the FRMC through the DFC, deeply described in D07.6, which features a digital
fire plan with visualisations of the spread of heat and smoke. In addition, the historical data
about triggered alarms and emergency-related events, like electrical connections, are plotted
on a timeline on the display to provide historical data about the emergency, as well as
predictions of near future developments.

Deliverable D08.4

18

8 References

Deliverable D07.11 of LASH FIRE, “Firefighting resource management simulator prototype”, pending to
be published in the sLASH FIRE site: https://lashfire.eu

Deliverable D08.4 of LASH FIRE, “Stowage planning optimization and visualization aid”, pending to be
published in the sLASH FIRE site: https://lashfire.eu

Deliverable D08.4

19

9 Indexes
9.1 Index of tables
Table 1.List of requirements ... 7
Table 2.List of additional considerations about configuration parameters respect to D08.4 8
Table 3.List of required parameters for FirePatrolReport service .. 8
Table 4. Additional fields of SERVICE_UNITS table ... 9
Table 5. Folders and files of the software development ... 11
Table 6.Implemented errors/warnings messages ... 11

9.2 Index of figures
Figure 1 - Software components of the Stowage Planning Tool ... 6
Figure 2. Workflow of FirePatrolReport service .. 10
Figure 3. Output for tests checking for a correct management of the parameters.............................. 14
Figure 4. Output for tests checking a correct construction of the query .. 15
Figure 5. Output in JSON format (full list of units) .. 16
Figure 6. Output in JSON format (filter for dg_class=2.2 used) .. 16

